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Extended phase-space dynamics for the generalized nonextensive thermostatistics
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~Received 8 October 2001; published 19 February 2002!

We apply a variant of the Nose´ thermostat to derive the Hamiltonian of a nonextensive system that is
compatible with the canonical ensemble of the generalized thermostatistics of Tsallis. This microdynamical
approach provides a deterministic connection between the generalized nonextensive entropy and power-law
behavior. For the case of a simple one-dimensional harmonic oscillator, we confirm by numerical simulation of
the dynamics that the distribution of energyH follows precisely the canonicalq statistics for different values
of the parameterq. The approach is further tested for classical many-particle systems by means of molecular
dynamics simulations. The results indicate that the intrinsic nonlinear features of the nonextensive formalism
are capable of generating energy fluctuations that obey anomalous probability laws. Forq,1 a broad distri-
bution of energy is observed, while forq.1 the resulting distribution is confined to a compact support.
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I. INTRODUCTION

Since the pioneering work of Tsallis in 1988@1#, where a
nonextensive generalization of the Boltzmann-Gibbs~BG!
formalism for statistical mechanics has been proposed, in
sive research@2# has been dedicated to develop the conc
tual framework behind this new thermodynamical approa
and to apply it to realistic physical systems. In order to ju
tify the generalization of Tsallis, it has been frequently
gued that the BG statistical mechanics has a domain of
plicability restricted to systems with short-range interactio
and non~multi!fractal boundary conditions@3#. Moreover, it
has been recalled that anomalies displayed by mesosc
dissipative systems and strongly non-Markovian proces
represent clear evidence of the departure from BG ther
statistics. These types of arguments have been duly r
forced by recent convincing examples of physical syste
that are far better described in terms of the generalized
malism than in the usual context of the BG thermodynam
~see@3# and references therein!. It thus became evident tha
the intrinsic nonlinear features present in the Tsallis form
ism, which lead naturally to power laws, represent powe
ingredients for the description of complex systems.

In the majority of studies dealing with the thermostatist
of Tsallis, the starting point is the expression for the gen
alized entropySq,

Sq5
k

q21 H12E @ f ~x!#qdxJ , ~1!

where k is a positive constant,q a parameter, andf is the
probability distribution. Under a different framework, som
interesting studies@4# have shown that the parameterq can
be somehow linked to the system sensibility on initial co
ditions. Few works have been committed to substantiate
form of entropy ~1! in physical systems based entirely o
first principles@5,6#. For example, it has been demonstrat
that it is possible to develop dynamical thermostat schem
which are compatible with the generalized canonical
semble@7#. In a recent study by one of us@8#, a derivation of
the generalized canonical distribution is presented from
1063-651X/2002/65~3!/036121~5!/$20.00 65 0361
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principle statistical mechanics. As a consequence, it is sh
that the particular features of a macroscopic subunit of
canonical system, namely, the heat bath, determines the
extensive signature of its thermostatistics and, therefore
power law behavior. More precisely, it is exactly demo
strated in@8# that if one specifies the capacity of the heat ba
as

dE

d~1/b!
}

1

q21
, ~2!

whereq is a constant, 1/b}kT, andT is the temperature, the
generalized canonical distribution maximizing Eq.~1! for the
HamiltonianH of the system is recovered,

f ~H !}@11b~q21!~E2H !#1/~q21!. ~3!

Here,E is a conserved quantity and denotes the energy of
extended system~system1heat bath!. Equation~2! provides
a very simple but meaningful connection between the gen
alized q statistics and the thermodynamics of nonextens
systems. It is analogous to state that, if the condition of
infinite heat bath capacity is violated, the resulting canoni
distribution can no longer be of the exponential form an
therefore, should not follow the traditional BG thermostat
tics. In the present study, we will show how the conjectu
proposed in@8# can be used to develop a variant of the orig
nal Noséthermostat@9# that is consistent with theq thermo-
statistics. We will then validate the technique by applying
to the cases of a simple harmonic oscillator and a class
many-particle system.

II. THE GENERALIZED EXTENDED SYSTEM

We consider a system ofN particles having coordinate
xi8 , massesmi and potential energyF(x8). As in the ex-
tended system method originally proposed by Nose´, here we
also introduce an additional degree of freedom throug
variables, which will play the role of an external heat bat
acting to keep the average of the kinetic energy at a cons
value. In practice, this is achieved by simply rescaling
real variables in terms of a new set ofvirtual variables
©2002 The American Physical Society21-1
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xi85xi , pi85
pi

sl , ps85
ps

sl , t85E dt

s
, ~4!

where l is a rescaling exponent, and (xi8 ,pi8 ,t8) and
(xi ,pi ,t) are the real and virtual coordinates, momenta, a
time, respectively. At this point, we postulate that a gene
ized Hamiltonian for the extended system can be written

Hq~x,p,ps ,s!5(
i 51

pi
2

2mis
2l 1F~x!1

ps
2

2Q
1

1

a

sg21

g
,

~5!

where the first two terms on the right side represent the
ergy of the physical system that is free to fluctuate@10#. The
virtual variableps also has a real counterpart,ps85ps /sl,
and has been introduced to allow for a dynamical descrip
of the variables. More precisely, the third termps

2/2Q cor-
responds to the kinetic energy of the heat bath and the
rameterQ is an inertial factor associated with the motion
the variables. The last term of the Hamiltonian~5! is a
power-law potential ins with a andg as parameters. As w
show next, it provides the essential link between the conc
of extended phase-space dynamics and the generalize
nonical ensemble.

We start by considering the quasiergodic hypothesis
writing the time average of a given quantity~in the virtual
time scale! A(x,p) as

Ā5
1

Z E E E E dx dp dps ds Ad~Hq2E! ~6!

with

Z5E E E E dx dp dps dsd~Hq2E!,

whereZ is analogous to a microcanonical normalization fa
tor for the generalized Hamiltonian~5!. Transforming the
virtual momentap and coordinatesx back to real variables
changing the order of integration and rewriting the volum
element asdxdp5sgldx8dp8, whereg is the number of de-
grees of freedom, we obtain

Ā5
1

Z E E dx8dp8AE E dps ds sgld~Hq2E!. ~7!

If we now make use of the property of thed function,
d„h(s)…5d(s2s0)/h8(s0), wheres0 is the zero ofh, it fol-
lows that

Ā5
1

Z E E dx8dp8AE dpsa

3F11agS E2H2
ps

2

2QD G ~gl11!/g21

, ~8!

where,
03612
d
l-
s

n-

n

a-

pt
ca-

d

-

H5H~x8,p8!5(
i 51

pi8
2

2mi
1F~x8!. ~9!

By integration with respect tops we get

Ā5
1

Z S aQ

2g D 1/2

BS 1

2
,
gl11

g D E E dx8dp8A

3@11ag~E2H !#~gl11!/g21/2, ~10!

whereB is the beta function,B(z,w)5*0
1tz21(12t)w21dt.

Finally, if we define

a[
b~q11!

2~gl11!
and g[2~gl11!

q21

q11
, ~11!

the generalized canonical average is recovered,

Ā5
1

Z8
E E dx8dp8A@11b~q21!~E2H !#1/~q21!

with

Z85E E dx8dp8@11b~q21!~E2H !#1/~q21!, ~12!

and we have thus proved that, under conservation of
extended Hamiltonian Eq.~5!, the fluctuations in the energ
H(x8,p8) of the physical system should be consistent w
the canonical formulation of the nonextensiveq thermosta-
tistics @11,12#. To obtain the time average in the real tim
scale, it is necessary to replace everywheregl by (gl21)
@9#.

III. RESULTS AND DISCUSSION

It is possible to confirm the validity of this approach wi
a simple realization of the generalized thermostat sche
We consider an extended system composed of a single
dimensional harmonic oscillator coupled to a heat b
whose thermal capacity obeys essentially Eq.~2!. From Eq.
~5!, such a system can be described by the following
tended Hamiltonian:

Hq~x,p,ps ,s!5
p2

2s2l 1
x2

2
1

ps
2

2Q
1

1

a

sg21

g
. ~13!

Herem51 for simplicity and we choose to setl52 because
the nonlinear dynamics for this case whenq51 ~i.e., for the
BG thermostatistics! has been shown to be sufficiently ch
otic to generate average properties of the canonical ense
@13#. From Eq.~13! and the scaling relations~4!, we obtain
the equations of motion for the extended system in the
phase space

dx8

dt8
5

p8

s
,

dp8

dt8
52

x8

s
2

2s2ps8p8

Q
,

1-2
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ds8

dt8
5

s3ps8

Q
,

dps8

dt8
5

1

s2 S 2p822
1

a
sgD2

2s2ps8
2

Q
. ~14!

A fifth-order Runge-Kutta subroutine is then used to nume
cally solve this set of nonlinear differential equations.
ensure the conservation of energyHq and the stability of
integration, all runs have been performed with 108 time steps
of Dt851024 each. The density maps shown in Figs. 1~a!
and 1~b! for q50.8 and 1.2, respectively, provide clear ev
dence that the dynamics of both systems fills space. Foq
.1 @see Fig. 1~b!#, the accessible phase space lies in a co
pact set, whereas the phase-space support forq,1 @see Fig.

FIG. 1. ~a! Density plot of the harmonic oscillator dynamic
subjected to the generalized thermostat scheme forq50.8. The ini-
tial conditions are @x8(0)50.5, p8(0)50.5, s(0)51.0, ps8(0)
50.0# and the thermostat parameters have been set toa51.0 and
Q51.0. ~b! Same as~a! but for q51.2.
03612
i-

-

1~a!# is infinite. The former situation is compatible with th
necessary cutoff condition on energy forq.1 @3#. In Fig. 2
we show the logarithmic plot of the distributions of the tran
formed variablex511b(q21)(E2H), where H5p82/2
1x82/2, for three different values of the parameterg54(q
21)/(q11) corresponding toq50.7, 0.8, and 0.9. Indeed
we observe in all cases that the fluctuations inx follow very
closely the prescribed power-law behavior,r(x)}x1/(q21),
and therefore confirm the validity of our dynamical approa
to the generalized canonical ensemble. As shown in Fig
the simulations performed forq.1 are also compatible with

FIG. 2. Logarithmic plot of the distributions of the transforme
variable x for q50.7 ~circles!, 0.8 ~squares!, and 0.9~triangles!.
From right to left, the three straight lines with slopes23.33,25.0,
and 210.0 correspond to the expected power-law behav
r(x)}x1/(q21).

FIG. 3. Logarithmic plot of the distributions of the transforme
variable x for q51.1 ~circles!, 1.2 ~squares!, and 1.3~triangles!.
From right to left, the three straight lines with slopes 10.0, 5
and 3.33 correspond to the expected power-law beha
r(x)}x1/(q21).
1-3
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the expected scaling behavior. However, instead of the lo
range tail obtained for the caseq,1, a rather unusual powe
law with positive exponent is observed.

Now we focus on a more complex application of the th
mostat scheme introduced here. The basic idea is to simu
through molecular dynamics~MD!, the nonextensive behav
ior of a classical many-particle system. For completeness
start by rewriting the expression for the extended Ham
tonian~5! in terms of the usualq-thermostatistics paramete
~i.e., q andb!,

Hq~x,p,ps ,s!5(
i 51

pi
2

2mis
2l 1F~x!1

ps
2

2Q

1
1

b
lnq~s@2~gl11!/~q11!#!, ~15!

where lnq(s)[(sq2121)/(q21) @3#. From Eq.~15!, it is then
possible to derive the equations of motion for any value oq
and any type of effective potential of interaction. We co
sider a cell containing 108 identical particles that inter
through the Lennard-Jones potential, F(Dxi j )
54e@(s/Dxi j )

122(s/Dxi j )
6#, where Dxi j is the distance

between particlesi andj, e is the minimum energy, ands the
zero of the potential. The distance, energy, and time are m
sured in units ofs, e, and (ms)2/e, respectively, and the
equations of motion are numerically integrated using
predictor-corrector algorithm@14#. In all the simulations we
performed, the relative fluctuation around the average of
total energy of the system has always been smaller t
1026.

Compared to the previous example of a single harmo
oscillator, the complexity of the many-particle system h
ders a quantitative prediction of the statistical behavior of
energy fluctuations. Because the exact form or even a p
sible approximation of the density of statesV(H) is difficult
to obtain in this case, we restrict ourselves to the qualita
analysis of the resulting energy distributionr(H)
}V(H) f (H). Furthermore, we performed additional simul
tion tests with different number of particles and physic
conditions to confirm that the MD system is always led
unstable trajectories in phase space whenever the valueq
is set to be smaller than a given thresholdqmin . In spite of
these limitations, however, the results shown in Fig. 4 clea
indicate the tendency for a broader distribution of ene
when q,1 ~we set q to be slightly larger thanqmin
tp

s,
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'0.9940 in this case!. For q.1, on the other hand, the re
sulting distribution of energy is notably more confined th
the Gaussian-like distribution obtained forq51 ~see Fig. 4!.

IV. CONCLUSION

In summary, we have shown that the essential feature
the generalized canonical distribution can be captured wi
proper extension of the standard Nose´ thermostat. To the bes
of our knowledge, this is the first time that a Hamiltonia
approach to the nonextensiveq thermostatistics leads explic
itly to the observation of a power-law behavior (q,1). We
thus believe that the microdynamical formalism presented
this work can provide a deterministic link between the ge
eralized entropy conjecture Eq.~1! and the concept of Le´vy
flights @7,15#. Finally, the methodology introduced here
flexible enough to accommodate the description of ot
nonextensive systems of physical significance.
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FIG. 4. Logarithmic plot of the energy distributions forq
50.9941~circles!, 1.0 ~full circles!, and 1.1~triangles!. In all three
cases, the MD simulations have been performed with 108 partic
b50.2, and a density of 0.1 particles/s3.
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