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Extended phase-space dynamics for the generalized nonextensive thermostatistics
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We apply a variant of the Nosthermostat to derive the Hamiltonian of a nonextensive system that is
compatible with the canonical ensemble of the generalized thermostatistics of Tsallis. This microdynamical
approach provides a deterministic connection between the generalized nonextensive entropy and power-law
behavior. For the case of a simple one-dimensional harmonic oscillator, we confirm by numerical simulation of
the dynamics that the distribution of energyfollows precisely the canonicaj statistics for different values
of the parameteq. The approach is further tested for classical many-particle systems by means of molecular
dynamics simulations. The results indicate that the intrinsic nonlinear features of the nonextensive formalism
are capable of generating energy fluctuations that obey anomalous probability laves<Eca broad distri-
bution of energy is observed, while fge>1 the resulting distribution is confined to a compact support.
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[. INTRODUCTION principle statistical mechanics. As a consequence, it is shown
that the particular features of a macroscopic subunit of the
Since the pioneering work of Tsallis in 1988], where a  canonical system, namely, the heat bath, determines the non-
nonextensive generalization of the Boltzmann-GilB&) extensive signature of its thermostatistics and, therefore, its
formalism for statistical mechanics has been proposed, inteppower law behavior. More precisely, it is exactly demon-
sive researcli2] has been dedicated to develop the concepstrated i8] that if one specifies the capacity of the heat bath
tual framework behind this new thermodynamical approactas
and to apply it to realistic physical systems. In order to jus-
tify the generalization of Tsallis, it has been frequently ar- dE OCL 2
gued that the BG statistical mechanics has a domain of ap- d(1/B) q-1’
plicability restricted to systems with short-range interactions ) )
and norimulti)fractal boundary conditionf3]. Moreover, it ~ Whereq is a constant, J§>kT, andT is the temperature, the
has been reca”ed that anoma”es d|sp|ayed by mesoscorﬁhene'rahz'ed Canon|ca| dIStI’Ibl.Jtlon maX|m|Z|ng E_tl) for the
dissipative systems and strongly non-Markovian processedamiltonianH of the system is recovered,
represent clear evidence of the departure from BG thermo- _
stgtistics. These types of argumer?ts have been duly rein- f(H)=[1+B(q—1)(E-H)]V™Y, &)

forced by recent convincing examples of physical systemgyere E is a conserved quantity and denotes the energy of the
that are far better described in terms of the generalized forgyianded systerfsystemrheat bath Equation(2) provides
malism than in the usual con;ext of the BG therrr_wdynamlcsd very simple but meaningful connection between the gener-
(see[3] and references therginit thus became evident that jjizeq q statistics and the thermodynamics of nonextensive
the intrinsic nonlinear features present in the Tsallis formal'systems. It is analogous to state that, if the condition of an
ism, which lead naturally to power laws, represent powerfulpfinite heat bath capacity is violated, the resulting canonical
ingredients for the description of complex systems. ~  igripution can no longer be of the exponential form and,
In the majority of studies dealing with the thermostatisticShgrefore, should not follow the traditional BG thermostatis-
of Tsallis, the starting point is the expression for the genersjcs | the present study, we will show how the conjecture

alized entropyS,, proposed i8] can be used to develop a variant of the origi-
nal Nosethermostaf9] that is consistent with thg thermo-
Sq:L[l_J [f(x)]qu], (1) statistics. We will then validate the technique by applying it
q-1 to the cases of a simple harmonic oscillator and a classical

i . ) many-particle system.
wherek is a positive constant) a parameter, anflis the

probability distribution. Under a different framework, some Il. THE GENERALIZED EXTENDED SYSTEM

interesting studief4] have shown that the parametgican

be somehow linked to the system sensibility on initial con- We consider a system df particles having coordinates
ditions. Few works have been committed to substantiate thg/ , massesn; and potential energyp(x’). As in the ex-
form of entropy(1) in physical systems based entirely on tended system method originally proposed by Ndosge we
first principles[5,6]. For example, it has been demonstratedalso introduce an additional degree of freedom through a
that it is possible to develop dynamical thermostat schemesariables, which will play the role of an external heat bath,
which are compatible with the generalized canonical enacting to keep the average of the kinetic energy at a constant
semblg7]. In a recent study by one of (i8], a derivation of  value. In practice, this is achieved by simply rescaling the
the generalized canonical distribution is presented from firsteal variables in terms of a new set wirtual variables
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r_ ,_pi ,_ps I dt . pi/z ,
X=X, B=gn PsTgx US| o 4) H_H(X’p)_i§12_mi+q)(x)' 9
where \ is a rescaling exponent, andx/(,p/,t’) and By integration with respect tps we get
(% ,p; ,t) are the real and virtual coordinates, momenta, and

1/2
time, respectively. At this point, we postulate that a general- A— l(ﬂ) (E M J J dx’'dp’A
ized Hamiltonian for the extended system can be written as Z\ 2y 2"y
— (gh+1)/y—1/2
y _2 plz ‘o N pg . 1s—1 X[1+ a'y(E H)] y (10)
q(x,p,ps,s)—izl 2m;s?* () 2Q a y whereB is the beta functionB(z,w) = [3t? (1—1t)"~dt.

(5) Finally, if we define

where the first two terms on the right side represent the en- _ Ba+1) d v=2(an+1 q-1 11
ergy of the physical system that is free to fluctudté]. The “= 2(gr+1) and y=2(g )q+ 1’ (D
virtual variable ps also has a real counterpag,=p/s", ) ) )

and has been introduced to allow for a dynamical descriptiofh€ generalized canonical average is recovered,

of the variables. More precisely, the third term§/2Q cor- 1

responds to the kinetic energy of the heat bath and the pa- A= —,f f dx'dp’A[1+ B(q—1)(E—H)]Ma-D
rameterQ is an inertial factor associated with the motion of z

the variables. The last term of the Hamiltoniab) is a
power-law potential irs with a and y as parameters. As we
show next, it provides the essential link between the concept

of extended phase-space dynamics and the generalized ca- Z’=f f dx'dp'[1+B(q—1)(E—H)]"a" Y, (12)
nonical ensemble.

We start by considering the quasiergodic hypothesis andnd we have thus proved that, under conservation of the
writing the time average of a given quantiy the virtual  extended Hamiltonian Ed5), the fluctuations in the energy
time scale A(x,p) as H(x',p’) of the physical system should be consistent with

the canonical formulation of the nonextensigghermosta-
— 1 tistics [11,12. To obtain the time average in the real time
A= ZJ f f f dxdpdpsds AS(Hq—E) ©) scale, it is necessary to replace everywhgxeby (gh—1)
[9].

with

with
I1l. RESULTS AND DISCUSSION

Z= j f f f dxdpdpsdss(Hqa—E), It is possible to confirm the validity of this approach with
a simple realization of the generalized thermostat scheme.
. . ) L We consider an extended system composed of a single one-
whereZ is analogous to a microcanonical normalization fac-§imensional harmonic oscillator coupled to a heat bath

tor for the generalized HamiltoniafB). Transformin_g the \vhose thermal capacity obeys essentially &. From Eq.
virtual momentap and coordinateg back to real variables, (5), such a system can be described by the following ex-
changing the order of integration and rewriting the vqumeten'ded Hamiltonian:

element asixdp=s9dx’dp’, whereg is the number of de-

grees of freedom, we obtain y ~ p2  x2 p2 1s-1 12
q(X.pyps,S)—Eﬂ+§+E+ZT- (13

— 1
E— ' ! A _
A Zf f dx'dp Af f dpsds $25(He—B). () Herem=1 for simplicity and we choose to skt=2 because

the nonlinear dynamics for this case whegna 1 (i.e., for the
If we now make use of the property of th& function, =BG thermostatistigshas been shown to be sufficiently cha-

o(h(s))=86(s—sp)/h'(sp), wheres, is the zero ofh, it fol- otic to generate average properties of the canonical ensemble
lows that [13]. From Eq.(13) and the scaling relationg!), we obtain
the equations of motion for the extended system in the real
— 1 phase space
= —J J dx’dp’AJ dpsa
Z ! !
dx" p
. . pg (Qh+1)/y—1 . ar = S

where, dt’ S Q
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4 FIG. 2. Logarithmic plot of the distributions of the transformed
' ' ' (b) variable y for q=0.7 (circles, 0.8 (squarel and 0.9(triangles.
From right to left, the three straight lines with slope8.33, 5.0,
and —10.0 correspond to the expected power-law behavior
5| 1 ploexe .
1(a)] is infinite. The former situation is compatible with the
necessary cutoff condition on energy fipr-1 [3]. In Fig. 2
P ot i we show the logarithmic plot of the distributions of the trans-
formed variabley=1+8(q—1)(E—H), whereH=p’?/2
+x'2/2, for three different values of the parameter4(q
—1)/(q+ 1) corresponding tq=0.7, 0.8, and 0.9. Indeed,
2t . we observe in all cases that the fluctuationg ifollow very
closely the prescribed power-law behavipy) s y@ 1),
and therefore confirm the validity of our dynamical approach
to the generalized canonical ensemble. As shown in Fig. 3,
42 5 o > 4 the simulations performed fay>1 are also compatible with

]

X

1 T T T T O

FIG. 1. (a) Density plot of the harmonic oscillator dynamics
subjected to the generalized thermostat schemg#d0.8. The ini-
tial conditions are [x’'(0)=0.5,p’(0)=0.5,s(0)=1.0, p,(0)
=0.0] and the thermostat parameters have been sett®.0 and
Q=1.0.(b) Same aga) but forq=1.2.

ds'  s’pg %
dt’ Q' o
=2
dps  1(_ ., 1 ) 25%p.? 1
_— re__ __qQY| —
T Sg(\Zp S o (14

A fifth-order Runge-Kutta subroutine is then used to numeri-
cally solve this set of nonlinear differential equations. To  _2 S S— s
ensure the conservation of enertly, and the stability of 05 04 03 I —0.2 01 0.0 0.1
integration, all runs have been performed with fifhe steps 0810k

of At'=10"* each. The density maps shown in Figéa)l  FiG. 3. Logarithmic plot of the distributions of the transformed
and 1b) for q=0.8 and 1.2, respectively, provide clear evi- variable y for q=1.1 (circles, 1.2 (squarey and 1.3(triangles.
dence that the dynamics of both systems fills space.gFor From right to left, the three straight lines with slopes 10.0, 5.0,
>1 [see Fig. )], the accessible phase space lies in a comand 3.33 correspond to the expected power-law behavior
pact set, whereas the phase-space suppod<dt [see Fig.  p(x)x a1,
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the expected scaling behavior. However, instead of the long- -1 . - - -
range tail obtained for the cage<1, a rather unusual power
law with positive exponent is observed. g
Now we focus on a more complex application of the ther- -2 T
mostat scheme introduced here. The basic idea is to simulate A
through molecular dynamid$/D), the nonextensive behav- 50000 A .
ior of a classical many-particle system. For completeness, W(E -3 C,oo :ﬁoo% T
start by rewriting the expression for the extended Hamil-Z o° *, % 9%
tonian(5) in terms of the usuaj-thermostatistics parameters - o by o« ©°f
(i.e.,q and B), S -4} o« . °, 1
pr P2 <. .. %o
1 S
Hq(X,p,pS,S)—i:E:L m‘f‘@(x)ﬂ—ﬁ iy : .. OO i
[¢]
1 °
+ _|nq(s[2(g>\+l)/(q+ 1)]), (15) 6 . . . . o
B 25 2.7 2.9 3.1 3.3 35
—(g-1 it i log,,H
where In(s)=(s"""—1)/(q—1) [3]. From Eq.(15), it is then

possible to derive the equations of motion for any valug of k|G, 4. Logarithmic plot of the energy distributions far

and any type of effective potential of interaction. We con-—0.9941(circles, 1.0 (full circles), and 1.1(triangles. In all three
sider a cell containing 108 identical particles that interactcases, the MD simulations have been performed with 108 particles,
through the Lennard-Jones potential, ®(Ax;;) B=0.2, and a density of 0.1 particles/

=4¢[ (o/Ax;j) "= (o/Ax;;)®], where Ax;; is the distance

between particlesandj, e is the minimum energy, andthe  ~0.9940 in this cage For g>1, on the other hand, the re-
zero of the potential. The distance, energy, and time are meaylting distribution of energy is notably more confined than

sured in units ofo, ¢ and Mo)?e, respectively, and the the Gaussian-like distribution obtained fpe=1 (see Fig. 4
equations of motion are numerically integrated using a

predictor-corrector algorithriil4]. In all the simulations we
performed, the relative fluctuation around the average of the
total energy of the system has always been smaller than In summary, we have shown that the essential features of
10°°. the generalized canonical distribution can be captured with a
Compared to the previous example of a single harmonigroper extension of the standard Ndsermostat. To the best
oscillator, the complexity of the many-particle system hin-of our knowledge, this is the first time that a Hamiltonian
ders a quantitative prediction of the statistical behavior of itsapproach to the nonextensigghermostatistics leads explic-
energy fluctuations. Because the exact form or even a plaitly to the observation of a power-law behaviag<1). We
sible approximation of the density of stat@$H) is difficult  thus believe that the microdynamical formalism presented in
to obtain in this case, we restrict ourselves to the qualitativghis work can provide a deterministic link between the gen-
analysis of the resulting energy distributiop(H)  eralized entropy conjecture Efl) and the concept of ey
«{)(H)f(H). Furthermore, we performed additional simula- flights [7,15]. Finally, the methodology introduced here is
tion tests with different number of particles and physicalflexible enough to accommodate the description of other
conditions to confirm that the MD system is always led tononextensive systems of physical significance.
unstable trajectories in phase space whenever the valge of
is set to be smaller than a given threshqig,. In spite of
these limitations, however, the results shown in Fig. 4 clearly
indicate the tendency for a broader distribution of energy This work has been supported by the Brazilian National
when q<1 (we setq to be slightly larger thangn, Research Council CNPq.

IV. CONCLUSION
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